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1 Outline

This document proves the convergence of ADMM for the problem Equation (11) in the
AAAI submission Distributed Composite Quantization. The proof is based on the SIAM
paper [4], in which it is proved that ADMM can reach convergence for a set of nonconvex
problems including the consensus and sharing problems that satisfies certain assumptions.
As stated in the abstract of [4], “We show that the classical ADMM converges to the set
of stationary solutions, provided that the penalty parameter in the augmented Lagrangian
is chosen to be sufficiently large”. In Section 2.2 of [4], Hong et al. proposes the Flexible
ADMM for the nonconvex global consensus problem whose each sub-problem can be exactly
solved. In Section 2.3, they generalize the Flexible ADMM as Flexible Proximal ADMM for
the case that sub-problem cannot be exactly solved. In Section 3, Hong et al. considers the
nonconvex sharing problem.

As stated in Page 4 in [4], the Flexible ADMM is “a more general version of ADMM
which includes the classical ADMM as a special case”. From page 5 to page 15 in [4], Hong
et al. have proven the convergence of the Flexible ADMM for the nonconvex global consensus
problem whose each sub-problem can be exactly solved.

The optimization problem in our AAAI submission falls into the framework of Section 2.2
of [4]. Therefore, we could prove the convergence of our optimization problem by showing
that:

1. The optimization problem in our AAAI submission is a nonconvex global consensus
problem, whose each sub-problem in the augmented Lagrangian can be exactly solved.

2. The certain assumptions required by [4] are satisfied.

The proof of convergence is organized as following:

• In Section 2, we introduce the nonconvex global consensus problem considered in [4],
and the required assumptions for the convergence of ADMM.

• In Section 3, we reformulate the optimization problem in our AAAI manuscript into
the form of the nonconvex global consensus problem.

• In Section 4, we show that our optimization problem satisfies the certain assumptions
required by [4].
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2 Nonconvex Global consensus problem

The nonconvex global consensus problem considered in [4] is defined as

min
K∑
k=1

gk(xk) + h(x0)

s.t. xk = x0,∀k = 1, . . . , K, x0 ∈ X,
(1)

where gk’s are a set of smooth, possibly nonconvex functions, h(x) is a convex nonsmooth
regularization term, X is a convex set. Note that h(x) does not need to be strictly convex.
This problem is related to the convex global consensus problem discussed heavily in [2], but
with the important difference that gk’s can be nonconvex.

The augmented Lagrangian for Equation 1 is given by:

L({xk}, x0; y) =
K∑
k=1

gk(xk) + h(x0) +
K∑
k=1

〈
yk, xk − x0

〉
+

K∑
k=1

ρk
2
||xk − x0||2 (2)

In Section 2.2 of [4], Hong et al. proposes to solve Equation 2 with the Flexible ADMM,
a more general version of ADMM which includes the classical ADMM as a special case. The
sub-problem of Equation 2 could be easily written as:

φ(xk) = gk(xk) +
〈
yk, xk − x0

〉
+
ρk
2
||xk − x0||2 (3)

As long as certain assumptions are satisfied, the convergence of the Flexible ADMM can be
theoretically guaranteed.

These assumptions are:

1. There exists a positive constant Lk > 0 such that

||∇kgk(xk)−∇kgk(zk)|| ≤ Lk||xk − zk||,∀xk, zk, k = 1, 2, . . . , K. (4)

Moreover, h is convex (possible nonsmooth); X is a closed convex set.

2. For all k, the penalty parameter ρk is chosen large enough such that:

(a) For all k, the sub-problem φ(xk) is strongly convex with modulus γk(ρk)

(b) For all k, ργk(ρ) > 2Lk
2 and ρ ≥ Lk.

3. The original problem Eq.( 1) is lower bounded, i.e., min
∑K

k=1 gk(xk) + h(x0) > −∞

Remarks:

1. We use L-BFGS to solve each sub-problem φ(xk) in our AAAI submission, and There-
fore, φ(xk) will be exactly solved as long as it is convex. The assumption 2(a) has
assumes φ(xk) to be strictly convex.

2. We use the same ρ for all K sub-problems in our submitted manuscript, one may
consider this as ρ = ρ1 = ρ2 = · · · = ρK .
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3 Problem Reformulation

Recall the optimization problem in our AAAI submission. We apply the classical ADMM to
optimize the Equation (10) in our submitted manuscript, which is as follows:

min
{Cs}

P∑
s=1

||Xs − CsBs||2F + µ

P∑
s=1

Ns∑
n=1

(
M∑
i 6=j

bsni
TCs

i
TCs

j b
s
nj − εs)2

s.t. Cs = Cs′ , s′ ∈ N (s), ∀s ∈ {1, 2, . . . , P}.

(5)

For consistency with Section 2, we replace s by k, P by K, and rewrite Equation 5 as below

min
{Ck}

K∑
k=1

||Xk − CkBk||2F + µ
K∑
k=1

Nk∑
n=1

(
M∑
i 6=j

bkni
T
Ck

i

T
Ck

j b
k
nj − εk)2

s.t. Ck = Ck′ , k′ ∈ N (k),∀k ∈ {1, 2, . . . , K}.

(6)

By defining the functions gk(Ck) and h(C) as:

gk(Ck) = ||Xk − CkBk||2F + µ
Nk∑
n=1

(
M∑
i 6=j

bkni
T
Ck

i

T
Ck

j b
k
nj − εk)2,

h(C) = 0,

(7)

we could write Equation 6 into the form of nonconvex global consensus problem:

min
K∑
k=1

gk(Ck) + h(C0)

s.t. Ck = C0,∀k ∈ {1, 2, . . . , K}.

(8)

As mentioned in Section 2, function h(C) does not need to be strictly convex, thus we
define h(C) = 0 to introduce the auxiliary variable C0. Note that we do not have C0 in the
original formulation Eq. (5). Since the change of C0 will not increase the objective, C0 can
be “implicitly” updated to any value to keep the consensus between the true variables {Cs},
though C0 does not exist in Eq. (5) in fact. The augmented Lagrangian of Eq. (8) is:

L({Ck}, {Λk}) =
K∑
k=1

gk(Ck) + h(C0) +
K∑
k=1

tr
(
ΛkT (Ck − C0)

)
+
ρ

2

K∑
k=1

||Ck − C0||2F , (9)

where Λk serves the same role as yk in Equation 2. Consequently, the sub-problem for 9 is:

φ(Ck) = gk(Ck) + tr
(
ΛkT (Ck − C0)

)
+
ρ

2
||Ck − C0||2F , (10)

Next, we show that our problem satisfies the assumptions listed in Section 2.
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4 Proof

4.1 Proof of Assumption 1

The assumption 1 is:

• There exists a positive constant Lk > 0 such that

||∇kgk(xk)−∇kgk(zk)|| ≤ Lk||xk − zk||,∀xk, zk, k = 1, 2, . . . , K. (11)

Moreover, h is convex (possible nonsmooth); X is a closed convex set.

Now we turn to our specific problem, we have

gk(Ck) = ||Xk − CkBk||2F + µ
Nk∑
n=1

(
M∑
i 6=j

bkni
T
Ck

i

T
Ck

j b
k
nj − εk)2, (12)

Since all gk(Ck)’s in our AAAI optimization problem have the same form, we remove the
k superscript and subscript for clarification. So Equation 12 can be simplified as:

g(C) = ||X − CB||2F + µ
N∑

n=1

(
M∑
i 6=j

bni
TCi

TCjbnj − ε)2, (13)

To compute ∇g(C), we first compute the partial derivative to each sub-matrix of C. For
m = 1, 2, . . . ,M , we have

∂g(C)

∂Cm

= 2
N∑

n=1

[
(

M∑
l=1

Clbnl −Xn)bnm
T + 2µ(

M∑
i 6=j

bni
TCi

TCjbnj − ε)(
M∑
l 6=m

Clbnl)bnm
T
]
. (14)

The ∇g(C) is the stack of Equation 14 for m = 1, 2, . . . ,M . To prove Inequality 11, we have
to show that:

• There exists a positive constant L > 0 for any matrix Y and Z such that

||∇g(Y )−∇g(Z)||F ≤ L||Y − Z||F (15)

Moreover, h is convex (possible nonsmooth); Y and Z are sampled from a closed convex
set.

Remarks:

1. Since f(x) = x2 is monotonically increasing when x ≥ 0, Equation 15 is sufficient and
necessary to

||∇g(Y )−∇g(Z)||2F ≤ L2||Y − Z||2F (16)

2. We define h(C) = 0, which is clearly convex (although not strictly).
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3. For our specific problem, we use the composition of elments of C to approximate
feature vectors. For the three datasets MNIST [7], LabelMe22K [12] and SIFT1M [5],
the feature vectors are raw pixel value, GIST feature, and SIFT feature, which are all
non-nagetive. During the training phase of the algorithm in our AAAI submission, it
is reasonable to assume that any entry of any feature vector is less or equal to some
positive number U . For example, given the training set Xtrain, one may easily find
U by executing a Matlab command max(max(Xtrain)). Thus, any entry of Y and Z
should be less or equal to U . The matrix Y and Z are sampled from a convex set
C = [−U ,U ]d×MK .

By moving the term ||Y − Z||2F in Equation 16 to the left side, we have

||∇g(Y )−∇g(Z)||2F
||Y − Z||2F

≤ L2 (17)

Therefore, the ultimate target is to prove that the left-hand term is upper-bounded, and set
L2 to be the upper bound. First, let us analyse the scalar term 2µ(

∑M
i 6=j bni

TCi
TCjbnj − ε)

in Equation 14. In our AAAI submission, bni is defined as a one-hot vector, ı.e., only one
entry of bni is 1, other entries are 0, thus,

−dU2 ≤ bni
TCi

TCjbnj = (bniCi)
TCjbnj ≤ dU2

−dM2U2 ≤
M∑
i 6=j

bni
TCi

TCjbnjU2 ≤ dM2U2 (18)

ε is a variable to minimize (
∑M

i 6=j bni
TCi

TCjbnj − ε), thus,

− dM2U2 ≤ ε ≤ dM2U2. (19)

Therefore, the scalar term 2µ(
∑M

i 6=j bni
TCi

TCjbnj − ε) is bounded by:

− 4µdM2U2 ≤ 2µ(
M∑
i 6=j

bni
TCi

TCjbnj − ε) ≤ 4µdM2U2 (20)

Also, we will use the following three properties of Frobenius norm for the proof next:

||A+B||2F = ||A||2F + ||B||2F + 2tr (ATB)

≤ ||A||2F + ||B||2F + 2||A||F ||B||F
≤ (||A||F + ||B||F )2

(21)

and
||AB||2F ≤ ||A||2F ||B||2F , (22)

and for any one-hot vector b and vector I whose all entries are 1,

||Ab||2F ≤ ||AI||2F (23)

in this case, || · ||2F is equivalent to || · ||22.
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Consider the numerator of the left hand of Equation 17,

||∇g(Y )−∇g(Z)||2F

=
M∑

m=1

||∂g(Y )

∂Ym
− ∂g(Z)

∂Zm

||2F

=
M∑

m=1

∣∣∣∣∣∣2 N∑
n=1

[
(

M∑
l=1

Ylbnl −Xn)bnm
T + 2µ(

M∑
i 6=j

bni
TYi

TYjbnj − ε)(
M∑
l 6=m

Ylbnl)bnm
T

− (
M∑
l=1

Zlbnl −Xn)bnm
T − 2µ(

M∑
i 6=j

bni
TZi

TZjbnj − ε)(
M∑
l 6=m

Zlbnl)bnm
T
]∣∣∣∣∣∣2

F

= 4
M∑

m=1

∣∣∣∣∣∣ N∑
n=1

[
(

M∑
l=1

Ylbnl −Xn) + 2µ(
M∑
i 6=j

bni
TYi

TYjbnj − ε)(
M∑
l 6=m

Ylbnl)

− (
M∑
l=1

Zlbnl −Xn)− 2µ(
M∑
i 6=j

bni
TZi

TZjbnj − ε)(
M∑
l 6=m

Zlbnl)
]
bnm

T
∣∣∣∣∣∣2
F

= 4
M∑

m=1

∣∣∣∣∣∣ N∑
n=1

[ M∑
l=1

(Ylbnl − Zlbnl) + 2µ(
M∑
i 6=j

bni
TYi

TYjbnj − ε)(
M∑
l 6=m

Ylbnl)

− 2µ(
M∑
i 6=j

bni
TZi

TZjbnj − ε)(
M∑
l 6=m

Zlbnl)
]
bnm

T
∣∣∣∣∣∣2
F

≤ 4
M∑

m=1

∣∣∣∣∣∣ N∑
n=1

[ M∑
l=1

(Ylbnl − Zlbnl) + 4µdM2U2(
M∑
l 6=m

Ylbnl)− 4µdM2U2(
M∑
l 6=m

Zlbnl)
]
bnm

T
∣∣∣∣∣∣2
F

≤ 4
M∑

m=1

∣∣∣∣∣∣ N∑
n=1

[ M∑
l=1

(Ylbnl − Zlbnl) + 4µdM2U2(
M∑
l=1

Ylbnl)− 4µdM2U2(
M∑
l=1

Zlbnl)
]
bnm

T
∣∣∣∣∣∣2
F

≤ 4
M∑

m=1

∣∣∣∣∣∣ N∑
n=1

[
(1 + 4µdM2U2)

M∑
l=1

(Ylbnl − Zlbnl)
]
bnm

T
∣∣∣∣∣∣2
F

≤ 4(1 + 4µdM2U2)2
M∑

m=1

∣∣∣∣∣∣ N∑
n=1

[ M∑
l=1

(Yl − Zl)bnlbnm
T
]∣∣∣∣∣∣2

F

≤ 4(1 + 4µdM2U2)2
M∑

m=1

N2 max
n

∣∣∣∣∣∣[ M∑
l=1

(Yl − Zl)bnlbnm
T
]∣∣∣∣∣∣2

F

≤ 4N2(1 + 4µdM2U2)2M max
n

∣∣∣∣∣∣ M∑
l=1

(Yl − Zl)bnl

∣∣∣∣∣∣2
F

≤ 4N2(1 + 4µdM2U2)2M
∣∣∣∣∣∣ M∑

l=1

(Yl − Zl)
∣∣∣∣∣∣2
F

≤ 4N2(1 + 4µdM2U2)2M(
M∑
l=1

||Yl − Zl||2F )

(24)
6



Now let us turn to the denominator left hand of Equation 17, by definition we have

||Y − Z||2F =
M∑
l=1

||Yl − Zl||2F (25)

By combining Equation 17, 24 and 25, we reach the following conclusion:

||∇g(Y )−∇g(Z)||2F
||Y − Z||2F

≤ 4N2(1 + 4µdM2U2)2M(
∑M

l=1 ||Yl − Zl||2F )∑M
l=1 ||Yl − Zl||2F

≤ 4N2(1 + 4µdM2U2)2M

(26)

thus, the desired L will be

L =
√

4N2(1 + 4µdM2U2)2M = 2N(1 + 4µdM2U2)
√
M (27)

4.2 Proof of Assumption 2(a)

The assumption 2(a) is:

• For all k, the penalty parameter ρk is chosen large enough such that:

– For all k, the sub-problem φ(xk) is strongly convex with modulus γk(ρk)

Remarks

• A differentiable function f(·) is called strongly convex with parameter m > 0, if for
any input x, y and t ∈ [0, 1], the following inequality holds :

f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y)− 1

2
mt(1− t)||x− y||22 (28)

• Modulus measures how convex a function is.

To our specific problem, our φ(xk) can be written as:

gk(Ck) = ||Xk − CkBk||2F + µ

Nk∑
n=1

(
M∑
i 6=j

bkni
T
Ck

i

T
Ck

j b
k
nj − εk)2,

φ(Ck) = gk(Ck) + tr
(
ΛkT (Ck − C0)

)
+
ρ

2
||Ck − C0||2F ,

(29)

We use the same ρ for all K sub-problems in our submitted manuscript, one may consider
this as ρ = ρ1 = ρ2 = · · · = ρK . Since all our gk(Ck) and φ(Ck) have the same form, we
remove the superscript k for clarification. Thus Equation 29 could be simplified as:

g(C) = ||X − CB||2F + µ
N∑

n=1

(
M∑
i 6=j

bni
TCi

TCjbnj − ε)2,

φ(C) = g(C) + tr
(
ΛT (C − C0)

)
+
ρ

2
||C − C0||2F ,

(30)
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To satisfy the assumption 2(a), we need to prove that for any matrices Y, Z ∈ [−U ,U ]d×MK ,
there exist a m > 0 that makes the following inequality hold:

φ(tY + (1− t)Z) ≤ tφ(Y ) + (1− t)φ(Z)− 1

2
mt(1− t)||Y − Z||2F (31)

which is equivalent to

2
tφ(Y ) + (1− t)φ(Z)− φ(tY + (1− t)Z)

t(1− t)||Y − Z||2F
≥ m (32)

thus, our target is to find a positive lower bound for the left hand of Equation 32.
Now let us consider the numerator of the left hand of Equation 32,

tφ(Y ) + (1− t)φ(Z)− φ(tY + (1− t)Z)

= t
[
g(Y ) + tr

(
ΛT (Y − C0)

)
+
ρ

2
||Y − C0||2F

]
+ (1− t)

[
g(Z) + tr

(
ΛT (Z − C0)

)
+
ρ

2
||Z − C0||2F

]
−
[
g(tY + (1− t)Z) + tr

(
ΛT (tY + (1− t)Z − C0)

)
+
ρ

2
||tY + (1− t)Z − C0||2F

]
= tg(Y ) + (1− t)g(Z)− g(tY + (1− t)Z)

+ t tr
(
ΛT (Y − C0)

)
+ (1− t)tr

(
ΛT (Z − C0)

)
− tr

(
ΛT (tY + (1− t)Z − C0)

)
+ t

ρ

2
||Y − C0||2F + (1− t)ρ

2
||Z − C0||2F −

ρ

2
||tY + (1− t)Z − C0||2F

= tg(Y ) + (1− t)g(Z)− g(tY + (1− t)Z)

+ t tr
(
ΛTY

)
+ (1− t)tr

(
ΛTZ

)
− tr

(
ΛT tY

)
− tr

(
ΛT (1− t)Z

)
+ 2tr(C0TC0)

+ t
ρ

2
||Y ||2F + t

ρ

2
||C0||2F − tρ||Y ||F ||C0||F + (1− t)ρ

2
||Z||2F + (1− t)ρ

2
||C0||2F − (1− t)ρ||Z||F ||C0||F

− t2 ρ
2
||Y ||2F − (1− t)2 ρ

2
||Z||2F − ρ||tY ||F ||(1− t)Z||F + ρ||tY ||F ||C0||F + ρ||(1− t)Z||F ||C0||F

= tg(Y ) + (1− t)g(Z)− g(tY + (1− t)Z) + 2tr(C0TC0)

+ t
ρ

2
||Y ||2F − tρ||Y ||F ||C0||F − (1− t)ρ||Z||F ||C0||F

− t2 ρ
2
||Y ||2F + (t− t2) ρ

2
||Z||2F − ρ||tY ||F ||(1− t)Z||F + ρ||tY ||F ||C0||F + ρ||(1− t)Z||F ||C0||F

= tg(Y ) + (1− t)g(Z)− g(tY + (1− t)Z)

+ 2tr(C0TC0) + t
ρ

2
||Y ||2F + t

ρ

2
||Z||2F − tρ||Y ||F ||C0||F − (1− t)ρ||Z||F ||C0||F

− t2 ρ
2
||Y ||2F − t2

ρ

2
||Z||2F − ρ

√
t
√

1− t||Y ||F ||Z||F + ρ
√
t||Y ||F ||C0||F + ρ

√
1− t||Z||F ||C0||F

(33)
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Now, let us focus to the row that involves g(·),
tg(Y ) + (1− t)g(Z)− g(tY + (1− t)Z)

= t
[
||X − Y B||2F + µ

N∑
n=1

(
M∑
i 6=j

bni
TYi

TY k
j bnj − ε)2

]
+ (1− t)

[
||X − ZB||2F + µ

N∑
n=1

(
M∑
i 6=j

bni
TZi

TZjbnj − ε)2
]

− ||X −
(
t Y + (1− t) Z

)
B||2F − µ

N∑
n=1

(
M∑
i 6=j

bni
T
(
t Y + (1− t) Z

)T
i

(
t Y + (1− t) Z

)
j
bnj − ε)2

= t
[
||X||2F + ||Y B||2F − 2tr(XTY B) + µ

N∑
n=1

[( M∑
i 6=j

bni
TYi

TYjbnj
)2 − 2ε

( M∑
i 6=j

bni
TYi

TYjbnj
)

+ ε2
]]

+ (1− t)
[
||X||2F + ||ZB||2F − 2tr(XTZB) + µ

N∑
n=1

[( M∑
i 6=j

bni
TZi

TZjbnj
)2 − 2ε

( M∑
i 6=j

bni
TZi

TZjbnj
)

+ ε2
]]

− ||X||2F − ||
(
t Y + (1− t) Z

)
B||2F + 2tr

(
XT
(
t Y + (1− t) Z

)
B
)

− µ
N∑

n=1

[( M∑
i 6=j

bni
T
(
t Y + (1− t) Z

)
i

T (
t Y + (1− t) Z

)
j
bnj
)2

− 2ε
( M∑

i 6=j

bni
T
(
t Y + (1− t) Z

)
i

T (
t Y + (1− t) Z

)
j
bnj
)

+ ε2
]

= t
[
||Y ||2F + 2tr(Y TB) + ||B||2F + µ

N∑
n=1

[( M∑
i 6=j

bni
TYi

TY k
j bnj

)2 − 2ε
( M∑

i 6=j

bni
TYi

TY k
j bnj

)]]
+ (1− t)

[
||Z||2F + 2tr(ZTB) + ||B||2F + µ

N∑
n=1

[( M∑
i 6=j

bni
TZi

TZk
j bnj

)2 − 2ε
( M∑

i 6=j

bni
TZi

TZk
j bnj

)]]
− ||
(
t Y + (1− t) Z

)
||2F − 2tr

((
t Y + (1− t) Z

)T
B
)
− ||B||2F

− µ
N∑

n=1

[( M∑
i 6=j

bni
T
(
t Y + (1− t) Z

)
i

T (
t Y + (1− t) Z

)
j
bnj
)2

− 2ε
( M∑

i 6=j

bni
T
(
t Y + (1− t) Z

)
i

T (
t Y + (1− t) Z

)
j
bnj
)]

= t
[
||Y ||2F + µ

N∑
n=1

[( M∑
i 6=j

bni
TYi

TY k
j bnj

)2 − 2ε
( M∑

i 6=j

bni
TYi

TY k
j bnj

)]]
+ (1− t)

[
||Z||2F + µ

N∑
n=1

[( M∑
i 6=j

bni
TZi

TZk
j bnj

)2 − 2ε
( M∑

i 6=j

bni
TZi

TZk
j bnj

)]]
− ||
(
t Y + (1− t) Z

)
||2F

− µ
N∑

n=1

[( M∑
i 6=j

bni
T
(
t Y + (1− t) Z

)
i

T (
t Y + (1− t) Z

)
j
bnj
)2

− 2ε
( M∑

i 6=j

bni
T
(
t Y + (1− t) Z

)
i

T (
t Y + (1− t) Z

)
j
bnj
)]

(34)
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By putting Equation 33 and 34 together, we have

tφ(Y ) + (1− t)φ(Z)− φ(tY + (1− t)Z)

= t||Y ||2F + tµ

N∑
n=1

[( M∑
i 6=j

bni
TYi

TY k
j bnj

)2 − 2ε
( M∑

i 6=j

bni
TYi

TY k
j bnj

)]
+ (1− t)||Z||2F + (1− t)µ

N∑
n=1

[( M∑
i 6=j

bni
TZi

TZk
j bnj

)2 − 2ε
( M∑

i 6=j

bni
TZi

TZk
j bnj

)]
− t2||Y ||2F − (1− t)2||Z||2F − 2ttr(Y TZ) + 2t2tr(Y TZ)

− µ
N∑

n=1

[( M∑
i 6=j

bni
T
(
t Y + (1− t) Z

)
i

T (
t Y + (1− t) Z

)
j
bnj
)2

− 2ε
( M∑

i 6=j

bni
T
(
t Y + (1− t) Z

)
i

T (
t Y + (1− t) Z

)
j
bnj
)]

+ 2tr(C0TC0) + t
ρ

2
||Y ||2F + t

ρ

2
||Z||2F − tρ||Y ||F ||C0||F − (1− t)ρ||Z||F ||C0||F

− t2 ρ
2
||Y ||2F − t2

ρ

2
||Z||2F − ρ

√
t
√

1− t||Y ||F ||Z||F + ρ
√
t||Y ||F ||C0||F + ρ

√
1− t||Z||F ||C0||F

= t||Y ||2F + t||Z||2F − 2ttr(Y TZ)

− t2||Y ||2F − t2||Z||2F + 2t2tr(Y TZ)

+ 2tr(C0TC0)

+ t
ρ

2
||Y ||2F − t2

ρ

2
||Y ||2F + tµ

N∑
n=1

[( M∑
i 6=j

bni
TYi

TY k
j bnj

)2 − 2ε
( M∑

i 6=j

bni
TYi

TY k
j bnj

)]
+ t

ρ

2
||Z||2F − t2

ρ

2
||Z||2F + (1− t)µ

N∑
n=1

[( M∑
i 6=j

bni
TZi

TZk
j bnj

)2 − 2ε
( M∑

i 6=j

bni
TZi

TZk
j bnj

)]
− µ

N∑
n=1

[( M∑
i 6=j

bni
T
(
t Y + (1− t) Z

)
i

T (
t Y + (1− t) Z

)
j
bnj
)2

− 2ε
( M∑

i 6=j

bni
T
(
t Y + (1− t) Z

)
i

T (
t Y + (1− t) Z

)
j
bnj
)]

− ρ
√
t
√

1− t||Y ||F ||Z||F
+
√
tρ||Y ||F ||C0||F − tρ||Y ||F ||C0||F

(35)
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Since t ∈ [0, 1], we have
√
t ≥ t and t ≥ t2. Therefore,

tφ(Y ) + (1− t)φ(Z)− φ(tY + (1− t)Z)

≥ t||Y ||2F + t||Z||2F − 2ttr(Y TZ)

− t2||Y ||2F − t2||Z||2F + 2t2tr(Y TZ)

+ 2tr(C0TC0)

tµ
N∑

n=1

[( M∑
i 6=j

bni
TYi

TY k
j bnj

)2 − 2ε
( M∑

i 6=j

bni
TYi

TY k
j bnj

)]
(1− t)µ

N∑
n=1

[( M∑
i 6=j

bni
TZi

TZk
j bnj

)2 − 2ε
( M∑

i 6=j

bni
TZi

TZk
j bnj

)]
− µ

N∑
n=1

[( M∑
i 6=j

bni
T
(
t Y + (1− t) Z

)
i

T (
t Y + (1− t) Z

)
j
bnj
)2

− 2ε
( M∑

i 6=j

bni
T
(
t Y + (1− t) Z

)
i

T (
t Y + (1− t) Z

)
j
bnj
)]

(36)

With Equation 18, 19 and 20, Equation 36 is further relaxed as:

tφ(Y ) + (1− t)φ(Z)− φ(tY + (1− t)Z)

≥ t||Y ||2F + t||Z||2F − 2ttr(Y TZ)

− t2||Y ||2F − t2||Z||2F + 2t2tr(Y TZ)

+ 2dMKU2 − 4µdM2U2

(37)

Now let us turn to the denominator of the left hand of Equation 32, we have

t(1− t)||Y − Z||2F = t(1− t)
[
||Y ||2F + ||Z||2F − 2tr(Y TZ)

]
(38)

Put Equation 37 and 38 together, we have:

2
tφ(Y ) + (1− t)φ(Z)− φ(tY + (1− t)Z)

t(1− t)||Y − Z||2F

≥
t
(
||Y ||2F + ||Z||2F − 2tr(Y TZ)

)
− t2

(
||Y ||2F + ||Z||2F − 2tr(Y TZ)

)
+ 2dMKU2 − 4µdM2U2

t(1− t)
[
||Y ||2F + ||Z||2F − 2tr(Y TZ)

]
≥
t(1− t)

(
||Y ||2F + ||Z||2F − 2tr(Y TZ)

)
+ 2dMKU2 − 4µdM2U2

t(1− t)
[
||Y ||2F + ||Z||2F − 2tr(Y TZ)

]
≥ 1 +

2dMKU2 − 4µdM2U2

t(1− t)
[
||Y ||2F + ||Z||2F − 2tr(Y TZ)

]
(39)
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For the second term in last row of Equation 39, we would like note that the µ in our
AAAI submission is only 0.0001, hence K > 2µM , and 2dMKU2 > 4µdM2U2. Therefore,
the entire term will be positive, and we may simply set m = 1 to satisfy Inequality 32 for
Assumption 2(a).

In the original Composite Quantization, it is also observed that small µ will not hurt the
search performance. See Section 3.2 of [19] for details.

As a quasi-Newton method, L-BFGS [11, 10] can always find the optimal solution for a
strongly convex problem, thus, each φ(C) will be exactly solved as is stated in Section 1.

The modulus

In mathematics, the modulus of convexity and the characteristic of convexity are measures
of ”how convex” the unit ball in a Banach space is. The modulus γ belongs to [0, 1] by
definition 1.

4.3 Proof of Assumption 2(b)

The assumption 2(b) is:

• For all k, the penalty parameter ρk is chosen large enough such that:

– For all k, ρ ≥ Lk and ργk(ρ) > 2Lk
2.

In line #606 of our AAAI submission, we state that we set ρ = 100, which do not
satisfy ρ ≥ Lk in most cases. Take the training set of SIFT1M dataset as an example,
N = 105,mu = 0.0001, d = 128,M = 8,U = 197, and the required L = 7.19× 1010, which is
much larger than our ρ.

The second condition ργk(ρ) > 2Lk
2 is clearly not satisfied either, even we suppose the

modulus γ(ρ) to be 1, which is the maximum of modulus.
However, we would like to emphasize that the relaxation in Section 4.1 is very large,

and Equation 27 is a very loose upper bound. It is just a sufficient condition, rather than
necessary condition.

In addition, we tried to set ρ = L to train the quantizers in our AAAI algorithm. On
SIFT1M dataset with 64 bits, we observe that the algorithm takes more iteration to converge
and result in worse accuracy as shown in the table below:

ρ 10 100 104 106 108 1010 1012

#Iteration to Converge 20 20 23 31 38 50 67
Recall@1 0.273 0.280 0.264 0.218 0.185 0.142 0.107

We can observe that ρ = 100 leads to the best accuracy. Although ρ = 100 is less than
the threshold L = 7.19×1010, we cannot conclude that our algorithm will not converge with
ρ = 100 due to the fact that L = 7.19× 1010 is a extremely loose bound. On the other hand,
the ρ = 1012 results in more training iteration and worse recall, even though it is provably
convergent.

1https://en.wikipedia.org/wiki/Modulus_and_characteristic_of_convexity
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4.4 Proof of Assumption 3

The objective function in Equation 5 consists of two terms. The first term is sum of Frobenius
norm, the second term is sum of square. Therefore, the objective function in Equation 5 is
larger or equal to 0, which satisfies the third assumption.

5 Conclusion

In the proof above, we reformulate the problem in our AAAI submission into the form of
nonconvex global consensus problem in Section 3. In Section 4.1, we prove that there does
exist a positive constant L > 0 for any matrix Y and Z such that

||∇g(Y )−∇g(Z)||F ≤ L||Y − Z||F (40)

In Section 4.2, we prove that all sub-problems of our augmented Lagrangian are strongly
convex. In Section 4.4, we show that our objective function Equation 8 is lower-bounded.

Although our ρ = 100 does not satisfy Assumption 2(b), we would like to emphasize that
Assumption 2(b) is sufficient but not necessary, due to the fact that the L in Section 4.1
in an extremely loose bound. As discussed in Section 4.2, ρ = 100 has better convergence
speed and accuracy than ρ = 1012, although ρ = 1012 is provably convergent.

Finally, we would like to note that many researchers have observed that the ADMM
works extremely well for various applications involving nonconvex objectives, such as the
nonnegative matrix factorization [20, 14], phase retrieval [16], distributed matrix factoriza-
tion [18], distributed clustering [3], sparse zero variance discriminant analysis [1], polynomial
optimization [6], tensor decomposition [8], matrix separation [13], matrix completion [17],
asset allocation [15], sparse feedback control [9] and so on.
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